
Introduction to Testing Webservices

Page 1 of 12

Introduction to Testing Webservices

 Author: Vinod R Patil

Abstract

Internet revolutionized the way information/data is made available to general public or
business partners. Web services complement this by allowing data exchange between
applications in a platform independent manner.
A Web service is a software system identified by a URI, whose public interfaces and
bindings are defined and described using XML. Its definition can be discovered by other
software systems. These systems may then interact with the Web service in a manner
prescribed by its definition, using XML based messages conveyed by Internet protocols.

The major challenges faced by the testers of webservices are the absence of a user
interface, scalability and security considerations and the distributed nature of
webservices. For tackling these challenges the webservice testing strategy must involve
proof of concept testing, unit testing, basic webservice testing, testing the SOA,
interoperability testing and load testing.

This white paper starts by describing the major challenges faced by the Web services
testing community. It then discusses the strategy recommended to test the webservice,
followed by a short discussion on Interoperability testing and Load testing. It also
includes the use of JMeter (an automated load testing tool) to test webservices. And
towards the end the paper highlights some of the major web services testing tools
currently available.

Introduction to Testing Webservices

Page 2 of 12

Abstract ...1
Introduction to Webservices ..3
Challenges in testing webservices..4
Scalability and Security.. 4
Absence of User Interface... 4
Distributed across network.. 4
Testing the service..4
Types of testing .. 4

Proof of concept Testing .. 4
Functional testing .. 5
Regression testing .. 5
Load testing ... 5

Webservice testing strategies .. 5
Unit testing.. 5
Basic testing .. 5
Testing SOA ... 6
Interoperability testing .. 6

Interoperability issues ... 6
Carrying out interoperability testing 7

Load testing ... 8
Load testing webservice with JMeter.......................... 8

Webservices Testing tools ... 11
Conclusion.. 12
About the author .. 12

Introduction to Testing Webservices

Page 3 of 12

Introduction to Webservices

Webservices is a technology that allows applications to communicate with each other
in a platform independent manner. Primarily webservices target issues of data and
application integration. They help us in exposing business processes as methods or
functions, which in turn allow businesses to communicate at an application or process
level with business partners.
XML based protocols are used to describe a webservice and standardized XML messages
are used by the webservice for communication with other services or with the client.

• Webservices are described using Web Services Description Language (WSDL). The

WSDL consists of the URL for the webservice, the methods that are accessible and
the input parameter types and the return types of the webservice.

• Standard Object Access Protocol (SOAP) is used as the messaging standard for
communicating with the webservice. The message is wrapped in a SOAP Envelope,
which can be delivered across network over most known transport protocols like
HTTP, IIOP, and SMTP and so on.

• Webservices are published and located with the help of Universal Description,
Discovery and Integration (UDDI).

Fig1.1 Webservice application architecture

Introduction to Testing Webservices

Page 4 of 12

Challenges in testing webservices

The loosely coupled nature of webservices and non-existence of a User interface
present a challenge to the developers and testers alike. Following are some of the
challenges that webservice testers have to face.

Scalability and Security
The development and deployment environments of webservices are vastly
different. If the webservice is for intranet usage then we have a theoretical
maximum number of users that will connect to the service and also we have control
over who can access the webservice so we have some security in place. But the
scenario for Internet webservice is different. There we cannot make any
assumptions about the number of users connected to the service, security or the
way in which the users will access the webservice. Also we must know in advance
the performance impact in case of large number of users connecting to the
webservice.

Absence of User Interface
Unlike traditional web applications web services do not have a user interface.
Hence they cannot be tested manually but require writing of test cases. For this
the tester needs to have programming skills and an overview of the webservices
fundamentals.

Distributed across network
Applications are generally built by integrating many webservices to leverage
existing webservice functionality. These webservices may be developed by the
same developers or may be provided by a third party. So thorough black box testing
must be performed. Also these services are distributed over the network and may
be hosted on different operating systems and deployed in different environments.
Hence while testing we have to take into consideration the issues of availability,
performance, reliability and security.

Testing the service

Types of testing

As with traditional applications, there are different sorts of testing that are needed
to be carried out in case of webservices.

 Proof of concept Testing

Webservice is a new concept and because of this we need to make sure that
the architecture that we have chosen for our application is a correct one.
There may be many options to choose from – for example which programming
language we are using for developing the webservice, the database vendor that
we will choose for the application etc. This type of testing mainly is conducted
to gauge the correctness of the architecture. It basically helps us in knowing if
our system is designed correctly.

Introduction to Testing Webservices

Page 5 of 12

 Functional testing
Webservice is designed to solve a business problem. It has a predefined
function to perform. This type of testing validates whether the service
performs the intended function correctly, does it handle the exception
conditions gracefully and does it handle the boundary value conditions.

Regression testing
Requirements may change as we start evaluating the software. Clients desire a
change in existing functionality or addition of new functionality after seeing
the system in action. Hence we need to change the existing system. In this
change some functionality may be lost or altered. Regression testing aims to
ensure that the webservice is still working across builds or releases. This sort of
testing needs to be carried out during each release; hence it is an ideal
candidate for automation. Test cases written in the unit-testing phase using
JUnit can be used for regression testing. Once written the test cases can serve
as a benchmark which any subsequent release must pass.

Load testing
Load or stress testing is a test of the performance of the webservice when
many simultaneous users are accessing the system. The response of the
webservice must be consistent and also its performance must not degrade with
the increase in the number of users. Load testing gives us a feedback on these
parameters and due to its very nature automated testing tools must be used for
Load testing.

Webservice testing strategies

Unit testing
Webservice is similar to any other traditional application, so unit testing is a
must. Unit test cases must be written before the application is developed. As
and when the application is built, test cases are applied on the code. Hence
the functionality is verified as and when we develop the webservice.

Basic testing
The main aim of this testing is to test whether the webservice is accessible and
can be invoked properly. Main focus in this phase should be to carry out the
following procedures.
• Get the WSDL file and test whether it is well-formed and in compliance

with the WSDL specifications published by W3C
• Using this WSDL file generate the client side stubs that handle the

interaction with the webservice.
• Test the webservice functionality that is whether the webservice responds

to the requests submitted to it correctly. This involves coding a sample
invoker to the client stubs.

• Invoke the sample invoker by passing it the parameters required by the
webservice. Check the response of the webservice from a functionality
point of view.

• The sample invoker calls the client stubs which further call the webservice.
The stub constructs the SOAP message from the parameters passed to it
and passes this message to the service. This message can be monitored by a
Sniffer program like TCP Monitor.

Introduction to Testing Webservices

Page 6 of 12

• If there are any security checks, like username and password we need to
test their effectiveness. The intent of this step should be to break in the
system and gain unauthorized access.

 Testing SOA

As organizations create a web service interface to their systems and overcome
security issues, they will be able to exchange data with business entities such
as customers, suppliers and partners in a more uninhibited and loosely coupled
manner. Enterprises and established groups of business partners will find that
UDDI-based service registries will become a critical enabler of the dynamic
discovery of Web services within controlled environments.
For testing such collaborating webservices we need to focus on the following
• In a system where webservices interact with each other, we need to test

the ‘publish’, ‘find’ and ‘bind’ capabilities of the constituent webservices.
• A particular SOAP message may typically have a designated recipient, but

may also have one or more intermediaries along the message route that
take actions based upon the instructions provided to them in the header of
the SOAP message. Web services testing must verify the proper
functionality of these intermediaries also.

Interoperability testing
In the loosely coupled environment of a service-oriented architecture, separate
resources don't need to know the details of each others working, but they need
to have enough common ground for reliably exchanging messages without error
or misunderstanding. Standardized specifications help in creating such a
common ground, but differences in implementation may still cause problems in
the communication. Interoperability is when services can interact with each
other without encountering such problems.

Interoperability issues
• Absence of datatypes in request or response

SOAP is the standard for communication between webservices. SOAP
requests are XML documents and XML provides flexibility regarding type
casting the data being passed. The flexibility can be a problem for
SOAP interoperability. For e.g. in the below message we do not have
type information for the <result> element.

The interpretation of the data contained in the <result> element then
becomes dependent on the underlying SOAP deserializer.

• Interpretation of data types

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <ns1:echoStringResponse
xmlns:ns1="http://TestInterop.org/">
 <result>Hello, This is a string</result>
 </ns1:echoStringResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Introduction to Testing Webservices

Page 7 of 12

Webservices use SOAP serializer and deserializer to translate the SOAP
message to the native language in which the webservice is
implemented and here we encounter dependency on the native
implementation for e.g. the way in which Date objects are defined in
Java is different from .NET or C++ date objects. This leads to
interoperability problems.

• Handling of precision
BigDecimal data types are used to represent large numbers. There are
differences in the maximum precision supported by the underlying
programming platform. So it may so happen that the request or
response of the webservice contains numbers having higher precision
than what can be handled by the native language of the service or the
client. The interpretation of these numbers then depends on how such
cases are handled by the native language. This may have an impact in
applications where precision is of importance like banking or financial
domain applications.

Carrying out interoperability testing
To test webservices for interoperability we need to send “echo”
invocations to the service in which a client sends a parameter of a certain
type (such as integer, string, etc.) and the server simply returns a
parameter of the same type and value. The client then examines the
returned value to ensure that it matches the value it sent. The below
figure illustrates the round trip for one such test.

Fig 1.2echoString test case

By executing this round trip, the test exercises
1) The ability for the server to parse the client's SOAP envelope.
2) The ability for the server to deserialize the encoded parameter

contained within the envelope.
3) The ability for the client to parse the SOAP envelope sent by the server

in response.
4) The ability for the client to deserialize the encoded parameter sent

back from the server.

Similarly we have test cases for other data types. Toolkits are available
for interoperability testing. For e.g. the toolkit provided by SOAPBuilders
(an online group created to address interoperability issues) can be found at
http://www.xmethods.net/ilab.
The results of SOAPBuilders ILAB interoperability testing are published at
http://www.xmethods.net/ilab/ilab.html#client.

Introduction to Testing Webservices

Page 8 of 12

Load testing
Load testing must be carried out in order to understand performance statistics
of the webservice. Load testing gives us an idea of what the users will
experience during their live interaction with the webservice when it is rolled
out into production. Load testing entails hitting the webservice with many
requests simultaneously and getting measures of times for various parameters
like time to connect to webservice and time for the receipt of the response
from the webservice. Also the correctness of the response in case of
simultaneous requests needs to be tested. Automated tools can be employed
for this phase. Let us see the testing of webservice with JMeter (one of the
automated tool that’s freely available).

Load testing webservice with JMeter
JMeter is a java-based tool to perform load, functional and behavior testing
and measure performance. It is used to perform testing of both static and
dynamic resources (files, Servlets, Java Objects, Webservices, Data Bases
and Queries). It can be used to simulate a heavy load on a server, network
or object to test its strength or to analyze overall performance under
different load types. You can use it to make a graphical analysis of
performance.

Getting started
To test a Webservice we need to create a Test Plan similar to traditional
applications. The following steps need to be carried out.

• Specify the number of users
• Specify the webservice location and a SOAP request to it.
• Add a listener to listen to the results
• Run the test plan

Specify the number of users
Add a Thread group to the Test plan. On the Thread group we can specify
the number of users we want to simulate and also the number of requests
that each user must submit. The configuration is shown in fig below.

Fig 1.3 Specify number of users

For each user we must specify a thread of execution. We want 5 users so
we must specify Number of threads as 5 here.

The requests from each user are repeated for the value specified in the
Loop Count field. Here we have specified the value as 2 so each thread will

Introduction to Testing Webservices

Page 9 of 12

repeat its request for 2 times. If we want the request to loop continuously
then we have to check the “Forever” check box.

The Ramp up period tells JMeter how long to delay between starting each
user. For example, if you enter a Ramp-Up Period of 10 seconds, JMeter
will finish starting all of your users by the end of the 10 seconds. So the
delay between the 5 users will be of 2 seconds. If you set the value to 0,
then JMeter will immediately start all of your users.

Specify the webservice location and a SOAP request
The SOAP request that the users will submit must be specified with the
help of “Webservice Request Sampler”. This is available on the Thread
Group when you right click it. Select the
Add-->sampler-->Webservice (SOAP) Request.

Next we need to specify the WSDL file location in the “WSDL URL” text box
and load the WSDL. If the WSDL is loaded correctly then the “Web
methods” drop down will be populated with the list of methods in this
webservice. Select a web method from the drop down and click the
“Configure” button. This wi ll populate the URL and SOAP Action fields.

Lastly we need to specify the SOAP message that we want to send to the
webservice. We can specify the message directly in the text area or specify
a file to pick the SOAP request from.

The fully configured Webservice Sampler will look as shown in the figure
below.

Fig 1.4 Specify the SOAP Message

Introduction to Testing Webservices

Page 10 of 12

Add a listener to listen to the test results
The final element you need to add to your test plan is a Listener. This
element is responsible for storing all of the results of your requests in a file
and presenting a visual model of the data.
Select the Thread Group element and add a Graph Results listener (Add -->
Listener --> Graph Results). Next, you need to specify a directory and
filename of the output file.

Fig 1.5 Output of JMeter

Running the test plan
Save the test plan and from the run menu, select Run. JMeter lights up a
green square in the upper-right-hand corner to indicate if a test is
currently running. The square is turned gray when all tests stop. The
results will be shown in the graphical format as shown above or if you
specify a file to save the results then the results will be saved to the file
and can be referred later.

Introduction to Testing Webservices

Page 11 of 12

Webservices Testing tools

Many industry experts expect testing tools to play a big part in the success of Web
services implementations. Following is the list of some of the Web Services testing
vendors and their tools.

Vendor Product Description

Red Gate

Parasoft

Segue

Altova

Apache

Advanced
.NET Testing
System
(ANTS)

SOAPtest

SilkPerformer

Xmlspy 5

JMeter

This tool predicts the Web service behavior
and performance under stress of multiple
user requests. It simulates multiple clients
accessing a Web application at the same
time. ANTS is the first product designed to
test .NET XML Web services.

This tool measures the three main areas
functionality, load, and regression. SOAPtest
can evaluate both the performance of SOAP
transactions at the server level and the user
experience at the client level. It compares
the actual responses from a Web service to
the desired responses and also tests the
internal construction of the components that
provide the Web service.

It is a load testing tool which can test
Java or .Net Web services. SilkPerformer
allows you to simulate thousands of users so
that we can predict the behavior of our
deployed webservice.

XMLSPY 5 includes full SOAP capabilities that
include interpretation of WSDL, creation of
SOAP requests, submitting them to the
Webservice and viewing the SOAP Response

General-purpose load drivers that you can
use to develop web service clients for
performance tests and display the collected
data in a graphical format.

Introduction to Testing Webservices

Page 12 of 12

Conclusion

The loosely coupled nature and absence of UI in webservices pose a number of unique
challenges during testing. We need to plan for testing right from the design stage
beginning with a proof of concept testing. Unit test cases help us layout a plan for
functional testing before we code the service. Once the webservice is developed a
basic test needs to be performed to test access to it. If the application involves
interaction of services with each other, then the test strategy should also include
testing the application from a Service Oriented Architecture perspective.
Interoperability testing ensures that the service will integrate seamlessly with varied
client environments. To know the performance and scalability of the webservice we
need to perform full-scale load testing. And finally as automated tools are conducive
and best suited for testing webservices, they should be used to perform the testing of
webservices.

About the author

Vinod Patil is a Software engineer with Patni computer systems ltd, India. He is a
Mumbai university first class graduate and holds a B.E Computer engineering degree
from Veermata Jijabai Technological Institute (V.J.T.I). He has been involved in
developing applications in the J2EE environment and software development in object
oriented environment in Patni for the last two years. Most recently he has been
involved in designing and implementing a Webservice interface for data of a project
being executed in Patni. His areas of interest include tracking the latest trends in Web
service, designing and developing distributed and scalable J2EE applications and
exploring the utility of new tools for developing and testing J2EE applications.

